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Note 

Split-Step Spectral Method for Nonlinear 
Schradinger Equation with Absorbing Boundaries 

By application of spectral methods [ 11 the computational solution of nonlinear 
partial differential equations has been improved in accuracy as well as efficiency in 
particular on vector computers. Fourier spectral methods [Z] require perio 
boundary conditions often in contrast to the actual physical problems where 
modelling by outflow boundary conditions may be appropriate in many cases. 

In this note we consider the cubic nonlinear Schrodinger equation (NLS) which 
occurs in nonlinear optics [3], deep water wave theory [4], plasma physics [S], 
biomolecular dynamics [6], e.g. The equation can be solved numerically by the 
split-step Fourier method (SSFM) described in [7, 81. We generalize the method 
by including an additional term in the partial differential equation with the effect sf 
absorbing outgoing radiation at the boundaries. The applications of SSFM requires 
periodic boundary conditions. However, the drawback of these conditions is 
eliminated by our new method. 

The NLS with periodic boundary conditions is given by 

iu,+&l,,+ Iu12 u=o, 

u( - L/2, t ) = 24 L/2, t), and f&t --w, ti = %(LP, t) 

-L/2<x<L/2, -cooOtt<,andu=u(x,t). 
The SSFM in its original form consists of two steps. First, the nonlinear part of 

Eq. (la), iu, + luj’ u = 0, is solved by means of the simple wave solution u(x, t) = 
u(x, 0) exp(i ju(x, O)/’ t). Second, the linear part of Eq. (la). iu, + $u,, = 0, is solved 
by means of Fourier transformation. 

Our modified verion of NLS is 

where the real function y(x) in the absorbing term, iy(x) u, is given by 

y(x) = y,(sech’[a(x - L/2)] + sech’[a(x + L/2)]). 

As seen in Fig. 1 we introduce smooth losses at the boundaries x = -L/2 and 
x = L/2 through this choice of y. 
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FIG. 1. The absorption function y(x) (2~) introduces losses in the neighborhood of the periodic 
boundaries at x= *L/2. Parameters yO and a in (2~) must be chosen such that the scattering from the 
“absorption walls,” sech2[cc(x T L/2)], is small. 

In the corresponding new generalized split-step method we first solve the non- 
linear part of Eq. (2a) 

iii,+lii1*ii+iy(x)ii=o (3) 

for which we have found the exact solution 

22(x, t) = 6(x, 0) exp{il ii(x, 0)l’ (1 - eC2”)/2y - it} (4) 

by inspection. Second, the linear part, iG, + ‘6 2 yx = 0, is solved in Fourier space by 

&k, t) = &k, 0) exp{ - ik2t/2}. (5) 

Also in our generalized SSFM the solution is advanced one time step At by (i) 
obtaining ii(x, At) from u(x, 0) by mezns of (4) with ii(x, 0) = U(X, 0), (ii) inserting 
the Fourier transform of ii(x, At) as U(k, 0) in (5) 

&k, At) = j-O0 12(x, At) exp{ikx} dx exp( -ik* At/2}, 
-co 

and (iii) transforming the resulting &k, At) back to x-space 

(6) 

u(x, At) = & ju &k, At) exp{ -ikx} dk. 
cc 

(7) 

This method is second-order accurate in At and all orders in Ax and is uncon- 
ditionally stable according to linear analysis [S]. 

Figure 2 shows the time development of the initial condition 

u(x, 0) = (1 + 0.6 cos 7x) sech x (8) 

in two cases: (a) subjected to the classical NLS dynamics given by (1) and (b) sub- 
jected to the NLS dynamics with absorption given by (2). The initial condition (8) 
desribes an NLS 1-soliton [9] with radiation superposed. In case (a) the radiation 
cannot escape from the system owing to the spatial periodicity and eventually 
destroys the 1-soliton. In case (b) the radiation is essentially absorbed already at 
the first passage of the boundary leaving the 1-soliton undisturbed. 
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FIG. 2. Evolution of NLS 1-soliton (8) with dynamics given by (a) classrcal NLS (l), (b) NLS with 
absorptton (2). Parameters L = 12.8, ~a = 20, and G( = 1. Resolution d-x = 0.1 and dl= 0.005. 

The difference between Figs. 2a and 2b demonstrates the importance of ad 
absorption in the NLS equation. This new trick makes the SSFM much more 
applicable to the physical problems mentioned in the introduction. 
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